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high frequency, similarly as by detection using piezoelectric sensors. It must be proved if 
sources of these pulses are temperature or electromagnetic interference.  

In the 1950s years it was reported by Kaiser upon tensile loading of tin bar, a great 
deal of audible noise was evident [1]. In his interpretation as the source of this sound was 
intended plastic deformation (twinning) and he called this signal as acoustic emission (AE). 
While the use of this method has been given to great importance in fracture mechanic, 
corrosion cracking or machine health monitoring, the monitoring of plastic deformation 
was the subject of minor interest. The excess energy, which transform into elastic waves or 
temperature, depends in great deal on the character of support energy to all physical 
processes. In the case if a great amount of energy by high speed is supported, the level of 
excess energy will be very high. The AE signal depends from this reason for example on 
stiffness of testing machine [2].  The signal is in principle generated by sudden changes in 
the structure of material. AE during plastic deformation is based on occurrence of signal 
induced by sudden structural changes. Such typical changes may be for example movement 
of dislocation piles or twinning [3-6]. 

Characteristic of the signal in the formed materials depends among others on 
material properties (hardness, breaking strength, toughness...) also on testing conditions 
(strain rate, temperature, friction...). Great possibilities of AE are in the description of 
process and also in indication and recovering of possible discontinuities and abnormalities 
in situ. There are published several examples of the application for forming sheet metals [7-
10]. The results of this application can be used for evaluation of the level of lubrication 
(deep drawing). Described experimental technique has been also applied to other forming 
technologies, for example for forging [11]. 

The criterion for AE detectability is according to work [12] given by relationship (1)  
 
naV ≥ 0.035 m2s-1           (1) 
 
where a is the radius to which the loop expanded before arrest at pinning point, V is the 
radial velocity, n is number of  dislocations involving the cooperation motion. When the 
value a =10-7 product nV will be greater than 3 x 105 m/s. This is the unlikely value relative 
to estimates published for example in [13]. 

The aim of the paper is to summarize the issues relating to the AE during plastic 
deformation. Further to specify the limits and conditions under which a detectable signal is 
generated and to carry out the discussion about the application possibilities of this method 
in technical practice. 

 
2 Experimental 

 
It is very difficult to detect AE signal, during plastic deformation of fine grained metal 
material with high level of deformation, using commonly produced experimental 
equipment. These materials can include low carbon steels (for example containing 0.2% C). 
Wide band or resonant commonly produced sensors are not able even the amplification the 
signal in electronic chain, to detect homogenous plastic deformation. The experimental 
procedure based on using accelerometers working on their “sharp” own resonant frequency 
was designed [14]. As it turned out, very useful is to use the accelerometer Brüel & Kjaer 
4335 working on its own resonant frequency 65 kHz. Output from sensor was led to input 
of 2 stage selective amplifier working on frequency 65 kHz. After amplification the signal 
was sorted into two groups. One counter Tesla counted up all the pulses greater than 150 
mVp+

  polarity on it inputs. Second counter Tesla counted up all the pulses greater than 300 
mVp+

  polarity on it inputs. Outputs from both counters were in digital form. In order to 
register the outputs from counters, on measuring tape recorder Bell &Howell, digital signal 
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deformation (tensile test) will be intermediate phases broken into smaller aggregates which 
will influence next deformation behavior of alloy. Morphology of these phases is 
significantly amended under deformation. It is considered, that cracking of brittle phase β 
in alloy AM60 contributes significantly to high value of counts rate and also to low 
differences in amplitude distribution of AE signal. The changes in morphology phase β 
should be, with the great probability, main factor causing constant value of counts rate after 
overcoming yield point. 

The AE signal is obvious already form the point where plastic deformation starts. 
On the other hand AE maximum is placed into the area of stress-strain curve slope change. 
This finding is very probably connected with the fact of the occurrence of another 
deformation mechanism. This is supposed by lighter growth of stress in next stages of 
tensile test. Very probably is (at least in early stages of plastic deformation) the plastic 
deformation caused by twins present in microstructure (the lack of suitable slip planes).      

This phenomenon allows using the lower sensitivity sensors and lower level of 
amplification signal being detected in comparison with copper. The reason is probably 
different microstructure arrangements. Copper was heat treated after rolling (manufacturing 
procedure), when a significant change of microstructure was done. The dendritic structure 
transformed itself into grain structure with many twins (sees Pic. 2b). Particle grain 
structure is probably one reason of great difference in counts rate between copper and Mg 
alloy AM60. On the contrary to previous case during tensile test of Cu the highest activity 
of AE was detected in early stages of deformation (up to sample necking). As can be 
compared counts rate between both cases cannot be compared. AM 60 alloy embodied 
considerably higher rate (by factor 100) than Cu (maximum is approx. 500 counts/s). Next 
difference is in subsequent decreasing of AE activity for copper. While in the case of 
AM60 the certain decrease was detected in the case of Cu significant decrement is evident 
there. As a potential explanation the change of deformation mechanism can be considered. 
It is known that deformation twinning mechanism prevails in low temperature and low to 
moderate strains mode when is combined with conventional slip.  

Other factor which must be taken into account is the influence of surface layers. 
This factor, which has very strong effect on AE signal are processes in surface layer or in 
its vicinity. In a series of publications, Kramer and others have emphasized the importance 
of the surface layer on the plastic deformation of metals [15-20]. During plastic 
deformation a surface layer is formed which serves as a barrier to dislocation movement. 
Dislocation pile-ups increase the dislocation density near the surface. Removing the surface 
layer, and with it the pile up dislocations, permits recovery of certain mechanical 
properties. By removal of surface layer the changes were observed in work hardening 
coefficients, in stress corrosion cracking and in fatigue life. 

These conclusions are confirmed by several published studies [21]. Strain rate is 
next parameter, which has great influence on the level of emitted AE signal [22]. Reduction 
of strain rate causes a significant reduction of emitted AE signal. The crossbeam speed had 
approximately the same value, therefore cannot be comparison by this parameter affected. 
This behavior is documented by pure metal with fcc lattice [23-27]. This reduction of AE 
activity was probably caused by influence of secondary induced barriers to the movement 
of mobile dislocations. Sudden rising of counts rate near the yield point should be induced 
by the movement of dislocation bands. These bands form the pile up barrier under the 
surface. Dislocation density rises in surface layer, but this process does not run 
continuously, by continuing loading the drops in counts rate occur (see Pic.3a) and 
simultaneously higher values of counts rate of greater amplitudes are recorded on Pic.3b. 
Occurrence of counts rate greater amplitude on Pic.3b and drops in record of counts rate 
lower amplitudes on Pic.3a is in good correlation. The tensile test at the end is influenced 
trough deformation instability by cross section changes. Greater values of counts rate 
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before breaking the specimen on Pic.3b are likely due to the response on micro cracking 
and cracking processes. 
 
4 Conclusions 
 
Plastic deformation processes of metallic materials have significant influence on forming 
and fracture behaviors of metallic products. AE is method, which should bring new 
approaches to material quality evaluation. During the tensile tests, simultaneously 
monitored by AE, signal is influenced from surface layer, residual stresses, grain size, 
secondary phases etc. From statistical evaluation of great amount of experiments can be 
then designed technological tests and evaluation procedures for production processes.   

The results of tensile tests simultaneously monitored by AE, confirmed influence of 
grain size and forming stage on AE-signal level. Homogeneous fine grained structure 
generates AE signal on low energetic level during plastic deformation that is similar to 
white noise. Such signal is possible to detect, using resonant sensors (accelerometer) 
working on its “sharp” resonant frequency. Accelerometer’s output is processed in selective 
preamplifier and then the signal from its output is led to counter input. All electronic chain 
is adjusted on resonant frequency of transducer. 

Ordinary higher values of counts rate were monitored from beginning of tensile test 
by coarse grained Mg alloys. The pulse amplitude achieves maximal values near the yield 
point. The fact was confirmed, that great differences exist in the character AE signal 
between coarse grained materials and ultra-fine grained materials (UFG). The signal from 
UFG materials has not burst character in contrast to coarse grained materials. For both 
groups of materials is AE signal during plastic deformation irreversible [1]. The significant 
influence of surface layer on this effect was proved e.g. in [28]. After removal of surface 
layer, similar AE to original test was observed during reloading [28]. Great plastic 
deformation during forming causes great increasing of hardness and strength. From this 
reason the hardening during subsequent tensile test is not emphatic. The brittle phase β is 
the main source of AE signal generated from Mg alloy AM60 after its yield point. The 
proportion between the signal from dislocation bands and signal from cracking phase β 
should be probably evaluated from amplitude distribution of AE signal. 

The sensitivity of AE method on structure stage and on forming stage can be used 
for design of simple technological tests. Relaxation processes efficiency after forming of 
copper using AE can be evaluated from the first part (elastic state) of tensile test. After 
relaxation process is the AE activity in this part of tensile test significant lower. The 
experiences from tests will serve for source analysis during hydrotest and for preparing 
method for on line monitoring exposed machinery parts. 
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