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Abstract. The localization of acoustic emission (AE) source positions is an 

important concept used for failure detection and material characterization. However 

classical localization techniques often provide misleading localization results in 

anisotropic fiber composites, media with internal discontinuities or due to incident 

reflections at the sensor position. As an alternative strategy to fixed localization 

schemes, we recently proposed an artificial neural network (ANN) based approach 

to improve the accuracy of AE source localization in fiber reinforced composite 

structures. This method offers the advantage of an adaptive modelling based on 

experimental data. Three plate like test specimens made of the thermoplastic carbon 

fiber reinforced composite T700/PPS with different dimensions were used for load 

bearing tests in combination with AE acquisition. We varied the thickness of the 

three specimens systematically to gain a ratio in the characteristic lengths from one 

to two to three. Therefore Lamb wave propagation in the thickest plate is expected 

to be systematically different from the wave propagation in the thinnest plate and is 

subject to mode specific propagation velocities and dispersion. In addition, the bolts 

used for load introduction disturb the signal propagation between AE source and AE 

sensors. This often causes erroneous AE source localizations using classical 

methods. In the present study, the localization quality in all structures investigated is 

presented in comparison between state-of-the-art methods and the neural network 

based method. We present results to quantify the absolute deviation of the two 

methods for known acoustic emission source positions using different wave 

excitation methods to simulate AE signals of different failure mechanisms. The two 

excitation methods vary distinctly in their AE signal characteristics and cause 

generation of different ratios of Lamb wave modes. The influence of these different 

Lamb wave modes on the localization accuracy will be discussed. Further, the 

application of both localization methods is presented in application on measurement 

data from load bearing tests of each geometry type. It could be demonstrated that the 

neural networks based approach provides better results compared to the classical 

methods.  

1. Introduction  

The application of fiber reinforced polymers (FRP) as lightweight construction material 

offers the possibility of free form design as well as an application specific optimum of 

strength and stiffness in combination with a low density. Moreover, composites offer many 

other advantages such as corrosion resistance, high specific energy consumption as well as 

http://creativecommons.org/licenses/by-nd/3.0/


2 

an adjustable electrical conductivity over wide ranges [1]. Therefore, these high-

performance materials show an increasingly broad range of use. However, designing 

materials with such anisotropic stiffness also leads to an anisotropic sound velocity. 

In general, FRP are used as thin-walled structures, such as plates, cylinders or rods. 

The way of acoustic signal propagation in such structures is a type of guided wave, for 

plates referred to as Lamb waves. The propagation velocities of the respective Lamb wave 

modes show high dependence on the direction of propagation. In addition, there is a 

variance of the acoustic emission (AE) signals in composite materials which depends on the 

acoustic emission source characteristics, i.e. due to matrix cracking or fiber breakage [2]. 

All of these effects can cause systematic localization errors, especially for localization 

methods assuming isotropic sound velocities. 

Therefore, new methods providing more accurate source localization procedures are 

highly appreciated for testing of composite materials. This is often achieved by 

improvement of classical methods or by aid of simulation approaches [3] [4] [5]. However, 

for a broad application, it is advantageous to develop a source localization method which is 

universally applicable and provides accurate results in arbitrary geometries. In the 

following, we demonstrate how neural networks can be used for AE source localization. 

The proposed method is demonstrated in application to three fiber reinforced plates of 

different size as typically used for testing of bearing strengths. This setup is particularly 

challenging for any source localization algorithm, since the bolts used for load introduction 

allow only indirect signal propagation paths between some of the source positions and the 

sensors. 

2. Methodology 

In the following we first introduce the classical source localization method and present our 

new approach for source localization using neural networks. Subsequently, details of the 

experimental setup used for the load bearing tests are presented. 

2.1 Classical source localization method 

The t method uses the arrival time difference of waves detected at two sensors as input 

quantity. Using the formula: 

   

|𝑟𝑖⃗⃗ −  𝑟0⃗⃗  ⃗| = 𝑐 (𝑡𝑖 − 𝑡0)        (1) 

 

the source location 𝑟0⃗⃗  ⃗ of the acoustic emission can be calculated. In equation (1) c is the 

propagation speed and the respective sensor locations 𝑟𝑖⃗⃗  use the arrival times 𝑡𝑖 at the 

respective sensor location. This formula is valid for two-dimensional systems. Since the 

components used here are plate structures, equation (1) can be applied. It can be seen from 

the structure of equation (1) that the output is a hyperbola of spatial vector length at equal 

arrival time differences. For this reason, three sensors are required to yield unique 

intersection point of the hyperbolas to perform a 2D source localization. Also, equation (1) 

uses a constant sound velocity c. It is possible to modify this equation, if a known bi-

directional velocity characteristic is present in the investigated object. This advanced 

method will be applied in the following results. As a solution procedure for the respective 

equation system Nelder-Mead algorithms [6] are used. All results obtained by this t 

method serve as a benchmark and will be referred to as classical approach in the following 

[7]. 
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2.2 Neural network source localization method 

The use of artificial neural networks (ANN) is usually divided into two phases. The first 

phase is referred to as model building or training phase, where the ANN is conditioned to a 

representative dataset. For the case of AE source localization, a complete set of input data 

consists of the arrival time differences between the sensors and their respective source 

positions. It must be ensured that the database used to build the model is representative and 

is fully descriptive of the system. Complex geometric shapes, acoustic invariances as well 

as mechanically stressed areas therefore require a higher density of training data points [8] 

[9]. Based on this training data, a function is approximated that includes all characteristics 

of the system. In the second phase, this function can be used to approximate any unknown 

AE source positions based on the measured arrival time differences. The advantage of this 

method is that it can approximate the properties of arbitrary systems, even if no analytic 

formula is able to perform source localization in such a structure. A similar approach has 

been followed by the group around Blahacek in [10] and Scholey [11] [12]. 

The individual components of a neural network are called artificial neurons which 

are linked via coupling weights. The weight of the couplings is changed by approximating 

the information provided by the training data set. As a learning rule suitable for the AE 

source localization procedure, supervised learning algorithms are used [13] [14] as they 

typically provide consistent and convergent networks. For such supervised learning, the 

classical backpropagation neural network is used as training algorithm as well as 

derivatives such as resilient backpropagation or superSAB [13]. In this case, the ANN is 

divided into individual layers with an arbitrary number of neurons. Each neuron has a 

connection to all the neurons of the subsequent layer which is known as a feed-forward 

network. This leads to a certain network output which is compared with the known target 

output (the known AE source location). The resulting deviation between the computed 

positions and the known positions is fed back to the network which gradually changes the 

weights to minimize the deviation. If the network output at a specific input dataset is 

sufficiently close to the target output the network is considered as trained and can therefore 

be used to approximate unknown AE source positions. In the context of AE source 

localization, two layer networks are used which can have 2-50 neurons per layer. The 

individual neurons use a sigmoidal activation function. 

3. Experimental Setup 

Three types of load bearing test specimens with different dimensions are investigated. The 

smallest specimen has a quasi-isotropic stacking sequence with the dimensions 108 mm x 

54 mm x 22 mm (height x width x thickness). The specimen has two holes with a diameter 

of 9 mm each about 31 mm from the edge. For load introduction, bolts were placed in these 

holes as depicted in figure 1. For the remaining two plates all geometrical dimensions were 

scaled by a factor of two and three, respectively. 

 As acoustic emission sensors four WD type sensors were used. These are coupled to 

the specimen by a medium viscosity silicone grease using clamps for the sensor position at 

the edges of the plates. The sampling rate is 10 MS/s with a preamplification factor of 

40 dBAE. The threshold was set to 35 dBAE and the waves were filtered using a band-pass 

ranging from 20 kHz to 1 MHz.  

 As training data matrix for the neural network source localization, a rectangular grid 

of 1 cm ± 0.7 mm is used for each of the specimen types. Therefore specimens of different 

sizes have a different number of training signals as data base. The training data was low-

pass filtered using a 3rd order Butterworth filter with 120 kHz cut-off frequency.  
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In previous work [9] it was shown that the localization quality of neural networks in 

CFRP plates with increasing anisotropy is superior to the localization quality of the 

classical method. In extreme cases, such as a unidirectional plates, the localization results 

were improved by a factor of 13. To achieve such a localization accuracy every structure 

had its own set of training data points and a set of test points which were created in the 

same setup. However, to investigate the scalability and portability of trained networks, only 

one database will be used for the results shown herein. This database was generated using 

the medium size plate. Since the three different plates vary in all dimensions by a factor of 

2 and 3 relative to the smallest plate, the t values of the training dataset are multiplied by 

the respective factors. When compared to the training datasets recorded for the smallest and 

largest plate no substantial differences to the scaled training dataset were observed.  

 Test signals are generated with a classical Hsu-Nielsen source [14] using a lead 

diameter of 0.5 mm and hardness 2H. The length of the pencil lead is 3 mm ± 0.5 mm. This 

test signal source preferably produces signals with low frequency content. In order to 

generate test signals representative for the full range of possible experimental signals 

during material failure, it is necessary to also generate signals with higher frequencies [2]. 

These signals are generated by a short electrical pulse applied to a piezoelectric actuator. 

The pulses are created using an arbitrary waveform generator using an edge width of 20 ns 

and a pulse width of 10 µs at a maximum of 10 V. The piezoelectric actuator generates a 

force pulse which then stimulates an acoustic emission signal with broad band-width.  

 The bandwidth of the pencil lead breakage signals was found to range from 200 

kHz to 400 kHz, while the bandwidth of the pulser reaches from 350 kHz to 800 kHz. It can 

thereby be ensured that for the training of the neural network, arrival times of all relevant 

modes are accounted for. As input or general location basis, the time differences are used 

which are extracted by threshold or the AIC criterion from the waves [15] [16]. The choice 

between the two is depending on the method that provides the least strong outliers.  

Experimentally it has been found that for the evaluation of the localization accuracy 

only the t arrivals are suitable which can be clearly assigned to one event. This is done by 

filtering the measured t values to assure all mutual t pairs are below a certain realistic t 

value. Measurement data from continuous emissions are also omitted from the analysis. 

4. Comparison of source localization results 

In the following we compare the results as obtained by the classical t method to the 

application of the neural network based method. 

4.1 Quantification of source localization accuracy 

To quantify the localization accuracy, it is important to know the real position of the 

sources. Since this is limited in the case of a measurement loading the specimen to failure, 

the localization accuracy of the two methods is compared in one structure using artificial 

 

 

 
Fig. 1. Exemplary illustration of the experimental setup 
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test sources as used for the training datasets. A total of 210 data points were generated each 

on a square pattern with 1 cm edge distance. From this data the t values were extracted 

whereas those records with unrealistic t values are sorted out. For the classical method, 

the test sources were localized with an anisotropic velocity distribution with 4190 𝑚 𝑠⁄  in 

the horizontal direction and 5320 𝑚 𝑠⁄  in the vertical direction. The result of the measured 

localization accuracy is shown in figure 2. For each test source position, the corresponding 

deviation between the test source position and the localization result (localization accuracy) 

is indicated as false-color range. This is shown for the classical method and the neural 

method using a Hsu-Nielsen source in figure 2. The color coding in figure 2 shows a 

deviation from 0 cm (blue areas) to up to 3 cm (red areas). It can be seen, that the classical 

method shows significantly higher deviations over the entire plate. The resulting average 

total localization error on the plate with the classic method based on 161 localized test 

source points is 1.41 cm ± 0.54 cm. In comparison, the localization result of the neural 

method on the left uses 51 training data points and 110 test data. The average localization 

error of the neural network method is 0.47 cm ± 0.37 cm. Thus the neural method 

outperforms the classical method by a factor of three. 

 

Since acoustic emission events of higher frequency are also likely to occur during 

loading of fiber reinforced materials, the localization quality is also examined for signals 

with higher frequencies using the piezoelectric pulser as test source as seen in figure 2. The 

result is shown on the right side of figure 3. The localization error using the classical 

method is 2.31 cm ± 0.54 cm whereas the same set of input data using the neural network 

method reduces the localization error to 1.09 cm ± 0.37 cm. Since the excitation by a 

piezoelectric pulser is less intense than by the pencil lead break, only 125 data points could 

be used instead of 161. However, the average localization error is reduced in this case by a 

factor of two.  

Since the neural network model is a fit of the symbolic link within a dataset, it is 

possible to determine the localization accuracy directly from the fit quality of the training 

procedure, assuming the data base is representative of the entire system. Thus by using all 

data points, the localization error can be further reduced to 0.3 cm by the pencil lead break 

source and to 0.7 cm by the piezoelectric pulser.  

4.2 Results from tensile testing 

Figure 3 shows the localization results using the classical and the neuronal method based on 

identical input data (i.e. identical t values). The left image shows the density of acoustic 

Hsu Nielsen source Piezoelectric pulser source 
   Classical Localization               Neural Localization               Classical Localization                 Neural Localization            
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Fig. 2. Color code representation of localization error in cm showing acoustic emission events on a plate 

with two holes and the dimensions 216 mm x 108 mm x 44 mm for pencil lead breaks as test source (left) 

and piezoelectric pulser as test source (right). 
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emission source events using the classical method and on the right is the respective result of 

the artificial neural networks based method. Based on the test principle and on the visual 

observations during and after the test, the maximum damage occurs directly behind the 

loaded bolt. Therefore it is expected that the acoustic emission sources occur predominantly 

above the upper bolt and below the lower bolt. 

It can be seen that the source positions obtained by the classical source localization 

method are scattered over the entire plate. For the small specimen 472 valid t sets were 

used. From these 472 data points, 188 data points were localized outside the plate by the 

classical source localization procedure. The algorithm used in the present investigation 

projects the data localized outside the defined range of interest to the edges of the plate. 

This causes the artefacts at the edges visible in figure 3. At the lower hole the maximum 

number of sources occurs. In contrast to the classical method, the right image shows the 

localization of the same data using the neural network based method. Here the distribution 

of source locations is significantly smaller. Also, an accumulation of acoustic emission 

sources above the top bolt is visible. At the lower bolt a much broader pattern of localized 

sources is evident. All 472 input sets were localized on the plate by the neural network 

based method, which means that there are no outliers present. In particular, all signals 

localized outside the plate by the classical method fall into the range now localized below 

the bolt. 

In figure 4, the localization of the t values is shown on a plate for dimensions 

twice that of figure 3. However, only 105 valid input sets were recorded despite of the eight 

times higher specimen volume. This is caused by the increasing amount of continuous 

acoustic emission signals during loading. This substantially reduces the amount of signal 

sets with clearly detectable signal onsets. For the classical source localization method it is 

observed that almost all AE events were located at the bolt positions. In the neuronal 

network based source localization, however, the dense spots of the acoustic emission source 

positions are close to the expected damage position above the upper bolt and below the 

lower bolt.  

  

 
 

 
 

Fig. 3. Localization of 472 acoustic emission events 

on a plate with two holes and the dimensions 108 

mm x 54 mm x 22 mm. left: Classical source 

localization procedure right: Neuronal source 

localization procedure 

Fig. 4. Localization of 105 acoustic emission events 

on a plate with two holes and the dimensions 216 

mm x 108 mm x 44 mm. left: Classical source 

localization procedure right: Neuronal source 

localization procedure 
 

In the largest plate (Fig. 5) all dimensions are three times larger than in the smallest 

plate. Again, a significant reduction of valid t sets to 69 is found. This again attributed to 
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39 points are placed outside the plate, whereas the neuronal source localization procedure 

places only one source event outside the plate. The positions of localized sources are spread 

out more than for the other plates, but the localized positions resemble spots of visually 

observed damaged as well. 

 

  
  

Fig. 5. Localization of 69 acoustic emission events on a plate with two holes and the dimensions 324 mm x 

162 mm x 66 mm. left: Classical source localization procedure right: Neuronal source localization procedure 

5. Discussion 

Three planar samples of different sizes used for load bearing tests were examined using 

acoustic emission analysis. These plates were loaded until bearing failure and the acoustic 

emission events occurring during the load were localized using two different methods. A 

high acoustic emission density is expected directly along the load axis behind the bolts due 

to the notch effect. The classical t localization method showed a very wide spread of 

localized sources. In general, the acoustic emission events scatter strongly in all specimens 

and particularly in the small plate size 188 of 472 measured points are localized outside the 

plate. Particularly difficult is the localization directly below the bolt, since there is no direct 

propagation path between all four sensors. Therefore, the localization results in this area 

exhibit high errors using the classical source localization method. This problem is 

particularly well seen in the medium size specimen. Here most of the points are localized 

directly at the bolt positions, while the neural network based results are very close to the 

visually observed damage positions. Therefore it can readily be concluded, that the neural 

localization results are more meaningful. This impression is also confirmed in the 

investigations of the largest plate as well as the previous investigations on the localization 

accuracy with the artificial emission sources. It has also been proven that the localization 

accuracy of the neural network based source localization exceeds the classical t 

localization method up to a factor of three, where it is also possible to estimate the expected 
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average error on the basis of the neural network fit quality, which was evaluated to be 

between 0.3 cm and 0.7 cm for the present case. 

It was demonstrated, that interferences of the wave field, such as reflections or 

geometric shapes can be accounted for using neural network based source localization 

approaches. 
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